Search results for "Chain rule for Kolmogorov complexity"
showing 2 items of 2 documents
Application of kolmogorov complexity to inductive inference with limited memory
1995
A b s t r a c t . We consider inductive inference with limited memory[l]. We show that there exists a set U of total recursive functions such that U can be learned with linear long-term memory (and no short-term memory); U can be learned with logarithmic long-term memory (and some amount of short-term memory); if U is learned with sublinear long-term memory, then the short-term memory exceeds arbitrary recursive function. Thus an open problem posed by Freivalds, Kinber and Smith[l] is solved. To prove our result, we use Kolmogorov complexity.
Effects of Kolmogorov complexity present in inductive inference as well
1997
For all complexity measures in Kolmogorov complexity the effect discovered by P. Martin-Lof holds. For every infinite binary sequence there is a wide gap between the supremum and the infimum of the complexity of initial fragments of the sequence. It is assumed that that this inevitable gap is characteristic of Kolmogorov complexity, and it is caused by the highly abstract nature of the unrestricted Kolmogorov complexity.